Sacramento River Science Partnership (SRSP) Floodplain Science & Management Symposium

The Juvenile Experience

Eric Holmes, UC Davis Carson Jeffres, UC Davis Dave Smith, USACE Anna Sturrock, University of Essex Adam Pope, USGS Rachel Johnson, SWFCS, NMFS

How juvenile salmon use Central Valley floodplains

By Eric Holmes Floodplain Symposium - October, 2021

Key points

- The floodplain is a dynamic habitat
- Flow pulses distribute salmon during the flood season
- Salmon diets vary with location and flow conditions – salmon are opportunivores
- Consequences of slow growth

Chinook Salmon

Anadromous life cycle

Endemic range in N. America

Life cycle model from umpquawatersheds.org

Four salmon runs in the California Central Valley

Source: www.davidrumsey.com

Chinook Salmon life history diversity

Figure from Herbold et al. 2018

Juvenile chinook migration timing

Empirical cumulative distribution functions for unmarked juvenile salmon from brood years 2004-2019 caught at Knights landing rotary screw trap

Migration timing primarily Dec-April

Image from calfish.org

Data source: SacPAS at www.cbr.washington.edu

Historic:

- Chinook evolved rearing on floodplains
- Today: Pre 1900 Riparian, wetland and other floodplain habitat data National Wetlands Inventory dataset (2018) Source: Chico state historic veg mapping project (2003)
- ~95% of wetlands lost
- Remnant off-channel habitat in flood bypass system composed of agriculture and wetland substrates.
- Accessible to salmon via weir system
- Butte Creek salmon have connected river-wetland corridor

Flow (cfs)

Proportion inundated

Sacramento River hydrology

DWR Sacramento Valley Water Year Hydrologic Classification Index Source: https://cdec.water.ca.gov

Discharge data from the Sacramento River at Verona USGS gauge: 11425500

The bypass floodplain is dynamic

Flow distributes juvenile salmon

Flow distributes juvenile salmon

Salmon numerically dominate the total catch in the Yolo Bypass during and after winter overtopping events

DWR crew sampling via beach seine for the Yolo Bypass fish monitoring project Photo credit: Jared Frantzich

Data source: IEP https://portal.edirepository.org/nis/mapbrowse?packageid=edi.233.2

Wild fish sampling from Yolo (2016-17) and Sutter (2018-21) Bypasses

Methods:

- Opportunistic sampling during and after flood events using beach seines and fyke net traps
- Fin clips taken for genetic run identification

Limitations:

- Access limited to margins during flood events
- Low take of listed runs on permits
- Diets based on fall run sized fish only

Wild fish sampling from Yolo (2016-17) and Sutter (2018-21) Bypasses

Methods:

- Opportunistic sampling during and after flood events using beach seines and fyke net traps
- Fin clips taken for genetic run identification

Limitations:

- Access limited to margins during flood events
- Low take of listed runs on permits
- Diets based on fall run sized fish only

Habitats sampled:

- Wetlands
- Agricultural fields
- Bypass canals
- Weirs

Wild caught salmon from Sutter and Yolo Bypasses 2016-2021

General patterns:

- All 4 runs observed in the Bypasses
- Winter run salmon accessing the bypasses primarily early in the flood season
- Small spring and fall run observed in the bypasses early in the flood season
- High degree of size variation observed later in the season

Wild caught salmon from Sutter and Yolo Bypasses 2016-2021

	Fall	Late-fall	Winter	Spring	Unknown	Total
Wetland	1	0	0	93	9	103
Agriculture	46	5	6	28	125	210
Canal	1	1	0	17	116	135
Weirs	21	1	19	3	19	63

Diet composition

General patterns:

 Salmon caught in wetland habitats showed zooplankton dominated diets

- Salmon caught in bypass agricultural and canal habitats had variable diets depending on water conditions
- Salmon caught entering the bypasses at the weirs had diets dominated by aquatic and terrestrial insects

Growth rate variation results from diverse rearing habitats

Challenges for late season migrants

Seasonal rise in Sacramento River and Delta water temperatures in the spring

Daily mean water temperature at Sherwood Harbor Data source: cdec.water.ca.gov

"Chinook Salmon smolts must transit the Delta before water temperature reaches 20°C or mortality will be nearly 100%"

- Nobriga et al. 2021

Challenges for late season migrants

Yolo Bypass fish monitoring program data (1998 – 2018)

Rotary screw trap

Image from water.ca.gov

Source data: https://portal.edirepository.org/nis/mapbrowse?packageid=edi.233.2

Using the past to predict the future

Histogram of mean Dec-Apr runoff at Verona

It takes two to make the seine go

Agency partners/funders & Private landowners

Staff/collaborators

Carson Jeffres, Rachel Johnson, Flora Cordoleani, Matthew Salvador, Miranda Bell-Tilcock, Gabriel Saron, Mollie Ogaz, Nicholas Corline, Rosa Cox, Emma Cox, and many more!

Floodplain Food Webs: Physical Process to Productivity

Floodplain Habitat Science and Management Symposium October 13-15, 2021 Carson Jeffres

CENTER FOR WATERSHED SCIENCES

Aquatic Food Webs

 What you observe in the aquatic food web is a product of the physical environment

Aquatic Food Webs

- What you observe in the aquatic ecology is a product of the physical environment
- Species in California have evolved to take advantage of a Mediterranean climate

30.03 inHg - 🖲 19°C 🌔 10/24/12 12:00 PM LWCUS

30.05 inHg - 9°C 🌒 12/03/12 01:00 PM LWCUS

Aquatic Food Webs

- What you observe in the aquatic ecology is a product of the physical environment
- Species in California have evolved to take advantage of a Mediterranean climate
- Understanding physical processes can help community composition and food web structure

Floodplain: Land along a river subject to seasonal inundation

HISTORICALLY:

 Much of the Sacramento Valley was wetland and riparian habitat

The Bay Institute, 1998

TODAY:

- ~95% of floodplains are no long available.
- Converted to agriculture and urban development.

The Bay Institute, 1998

Floodplains in California

• Extent of floodplain habitat greatly reduced

• Hydrologic context

• Flood timing, duration, and location dictate opportunities for food web abundance and composition.

Floodplain Food Webs

Floodplain Food Webs

Floodplain Food Webs

Conceptual Model of Floodplain Food Web

Cosumnes River Floodplain Food Web

Ahearn et al. 2006

Grosholz and Gallo 2006

Jeffres et al. 2008

Food Web Over Time

Food Web Over Time

Sources of Carbon

Food Web Duration

Sources of Carbon

Steeping the Tea

Steeping the Tea

Floodplain Food Web

Floodplain vs River Food Webs

• Where does our "primary production" coming from?

Chlorophyll

• The Sacramento River follows traditional models of in situ photosynthesis.

Food Web

Grazing : Primary Production

Food Web

- Where is our basal carbon (aka energy) coming from?
- The Sacramento River follows traditional models of autotrophic production.
- Floodplain "fueled" by mix of autotrophic and heterotrophic food webs

Dissolved Organic Carbon

Detrital Sources in the Food Web

- Model developed using USGS
 Streammetabolizer package in R
 - uses inverse modeling to estimate aquatic metabolism (photosynthesis and respiration) from time series data on dissolved oxygen, water temperature, depth, and light.

Food Web Composition

Lack of Permanent Fish Predators

Without Fish

With Fish

Brooks and Dodson 1965

Food Web Composition

Cladocerans are Indicators of Off-Channel Habitats

Off-Channel Habitat				River Habitat			
Species	Specificity	Fidelity	P-value	Species	Specificity	Fidelity	P-value
D. pulex	0.99	1.0	0.0001	llyocryptus sp.	0.74	0.67	0.043
Rotifera	0.98	1.0	0.0005				
Simocephalus sp.	0.96	1.0	0.0001				
Acanthocyclops sp.	0.96	1.0	0.0001				
Bosmina sp.	0.95	1.0	0.0007				
Ceriodaphnia sp.	0.95	1.0	0.0013				
Calanoid sp.	0.90	1.0	0.0070				
D. mendotea	0.99	1.0	0.0020		(Corline et	al. 2020

Specificity-How good a indicator the species is for the site group. Ex. We found D. pulex so we can be pretty certain that this sample is from a off-channel site.

Fidelity-Probability of finding the species in the said group. It if I go to a off-channel habitat what is my probability of finding D. pulex.

Similar Off-Channel Communities

You Are What You Eat

Jeffres et al. 2008

Stomach content of salmon (2014-16)

You Are What You Eat

Dietary sources of amino acids in juvenile Chinook Salmon in CV habitats

B. Nakamoto unpublished data

You Are What You Eat

Bell-Tilcock et al. in press

Food Web Considerations

• Timing

• When flooding happens

• Duration

• How long a flood lasts

• Magnitude

• Volume of river discharge

Food Web Considerations

- Timing
 - When flooding happens
- Duration
 - How long a flood lasts
- Magnitude
 - Volume of river discharge

Food Web Considerations

- Timing
 - When flooding happens
- Duration
 - How long a flood lasts
- Magnitude
 - Volume of river discharge

April 1, 2017

Spring 1851

Satellite Imagery by Matt Clark

NASA.gov

Future of Food Webs

- Reconciled System
 - We are not going back
 - We ultimately control the system and decide how it functions
 - Restoration of processes

Future of Food Webs

Carson Jellres

- Reconciled System
 - We are not going back
 - We ultimately control the system and decide how it functions
 - Releases
 - Restoration of processes
- Diversity of habitat types
 - "natural" floodplains
 - Multi-benefit floodplains

Future of Sac Valley Food Webs

- Reconciled System
 - We are not going back
 - We ultimately control the system and decide how it functions
 - Releases
 - Restoration of processes
- Diversity of habitat types
 - "natural" floodplains
 - Multi-benefit floodplains
- String of Pearls
 - Connecting habitats throughout the system

Questions ?

Juvenile passage: fish movement onto the floodplain

Dave Smith USACE-ERDC

US Army Corps. of Engineers®

DISTRIBUTION STATEMENT HERE, e.g., Distribution A: Approved for public release. or Distribution C: Distribution authorized to U.S. Government Agencies and their contractors; Vulnerability Information; January 2015. Other requests for this document shall be referred to US Army ERDC, ATTN: CEERD-GSV, 3909 Halls Ferry Rd., Vicksburg, MS 39180-6199.

File Name

DISCOVER | DEVELOP | DELIVER

Project Objectives

- Use measured fish and hydraulic data to evaluate future conditions with a entrainment notch in place.
- Estimate <u>relative</u> entrainment for notch scenarios and alternatives and validate against other studies in Sacramento River.
- Describe notch features that influence entrainment (size, orientation, location, flow etc).
- Develop information for next phase (engineering and evaluation of accuracy and precision).

Model Domains

- Spatial and temporal overlap with fish telemetry data
- 2015 was contained within levees and did not contain Sutter or Yolo Bypass
- 2016 included Sutter inflows and Yolo outflows
- Boundary conditions provided by TUFLOW

2D model calibration and validation

• Data for stage and velocity used

2016 Sutter Influence

Fish telemetry

- 2015 (one release group) and 2016 (two release groups)
- 2015
 - 14.9 ft stage (low)
 - Late fall and winter Chinook
- 2016
 - 18.4 and 26.9 ft stage
 - Late fall Chinook
- Conclusions
 - Higher stage increases speed over ground
 - Fish are skewed toward the outside bend (D2C mean > 0)
 - Stage has small influence on spatial distribution

Calibration/Validation Approach

- Used 2015 telemetry and hydro data to calibrate to one stage (14.9 ft)
- Used 2016 telemetry data at higher stages to validate 2015 calibration
- Fish release/removal
 - 500 fish/run released at Knights Landing
- Ensemble development
 - Multiple runs with different behaviors
- Fish size/species
 - Fish size set at 124 mm, mean LFC/WC size in Steel et al (2017).
- Behavior rule
 - BI:Swim downstream at 1.5 BL/s $\pm \sigma$
 - B2: Swim toward faster water, increased swim speed
 - B3: swim toward slower water (downstream direction), increased swim speed
- Stochasticity
 - Ornstein-Uhlenbeck (OU)
- Process
 - Compare measured Speed Over Ground, spatial distribution between measured and model and adjust stochasticity, behavior, and speed to match measured fish data
 - Calibrated model used BI only with fixed OU coefficients

Results

- Speed Over Ground
- 2016 validation matched measured fish speed over ground
- No difference in measured ground speeds

Results – spatial distribution

Modeled

Results – spatial distribution

- Results represent cross channel fish distribution seen with measured fish
- 2015 final calibration shown in white points
- Both output at 20 seconds intervals
- Image is georeferenced (UTM Zone 10 N)
- Modeled points occupy wider channel cross section than measured
- Cross channel distribution well represented in model

Results with hydro

Using the calibrated/validated model

- Build 2D models for each EIS/EIR alternative for 6 stages representing6 notch flows
- Stages representative of wide range of hydrologic conditions at Fremont Weir
 4.2916E+0
 4.2916E+0
- Run and compute entrainment as percentage of fish versus ration of notch flow/river flow

Examples: EIR/EIS 1 (East) and 3 (West)

Entrainment results

- Across all stages, entrainment is 1 to 38%
- Higher flows at a given stage increases entrainment
- For a given flow/stage notch entrainment is insensitive to location
- Entrainment is dependent on fish location In cross section
- Entrainment is dominated by advection-suggest slower water or bigger fish will display more behavior

Building confidence in the entrainment estimates

ainment ((%)

- Used entrainment estimates elsewhere in Sacramento to gauge magnitude of expected entrainment as function of flow – Independent validation
- Plotted EIS 1 entrainment estimates on same scale as measured entrainment at Sutter and Steamboat Sloughs
- Suggest that entrainment estimates at Freemont Weir are realistic
- This is important suggest accurate forecast are possible and that further engineering evaluation can improve entrainment

Floodplains

- Floodplains are the most impacted geomorphic feature of rivers
- Critical ecosystems services lost while other economic services gained
- Ecological forecast are not readily synchronized with engineering design – critical shortcoming
- How do you forecast ecological outcomes for conditions you cant measure?
 - This project is one method forward
 - Mechanistic with simple ecological outcomes (not populations)
 - Post construction validation is planned
- Fremont Weir/Yolo Bypass work suggest a measured approach to ecosystem services/economic services is possible

Acknowledgments

- Department of Water Resources (funding)
 - James Newcomb, Josh Urias, Josh Martinez, Edmond Yu, Manny Bahia, Rajet Saha, Ryan Reeves, Jacob McQuirk, Jim West, Ted Sommer, Trevor Greene, Brett Harvey
- USBR (funding agency)
 - Josh Israel, Traci Michel
- Crammer Fish Sciences
 - Travis Hinkelman
- UC Davis
 - Gabe Singer/Anna Steel
- CBEC
 - Chris Campbell
- USGS
 - Jason Romine, Paul Stumpner, Aaron Blake, Jon Burau
- USACE (funding)
 - Brian Mulvey, Mike Fong, David Colby, Brian Luke, Natalie Houghton
 - John Nestler (retired)
 - SacBank Team
 - Staff of Livingstone Stone and Coleman National Fish Hatchery
 - Fisheries Engineering Technical Team

Complicated relationships: Environmental drivers of salmon phenology & foodscapes

Anna M. Sturrock ^{1,2}, Rachel Johnson ^{2,3}, Stephanie Carlson ⁴, Flora Cordoleani ^{3,4}, Corey Phillis ⁵, Pedro Morais ⁴, Carson Jeffres ², Mollie Ogaz ²

¹ University of Essex, School of Life Sciences, ² UC Davis, Center for Watershed Sciences, ³ Southwest Fisheries Science Center, NMFS, ⁴ UC Berkeley, ⁵ UC Santa Cruz, ⁶ Metropolitan Water District

Presentation outline

- Intro. Evolutionary → recent history of salmon in the California Central Valley
- **Flow shaping.** Sturrock et al. (2020) Global Change Biology. Unnatural selection of salmon life histories in a modified riverscape
- **Habitat mosaic.** Morais et al. (in prep) Climate variability and juvenile density drives migratory behavior and habitat use in an endangered salmon
- **Thermal refug**ia. Cordoleani et al. (in press) Nature Climate Change Threatened salmon rely on a rare life history strategy in a warming landscape.
- **Foodscapes** The multifaceted benefits of floodplains to early migrants. Sturrock, Ogaz et al. (in review) Floodplain trophic subsidies in a modified river network: Managed foodscapes of the future?
- Summary.

Evolutionary history of Pacific salmonids

Photos courtesy of T. Quinn

www.pugetsound.edu/files/resources/salmonevolution.jpg

+ disturbance regimes+ natal homing and local adaptation

 Background
 Flow shaping
 Habitat mosaic
 Thermal refugia
 Foodscapes
 Summary

Evolutionary history of Pacific salmonids in California

Increasing climatic variability

ADULT RETURN TIMING

Data sources: Vogel and Marine, 1991; Hallock, 1983; CDFG, 1993

JUVENILE EMIGRATION TIMING

Spence & Hall (2010). CJFAS 67: 1316-1334

Background

Thermal refugia

Foodscapes

Summary

Recent history of salmonids in California

Low flows associated with increased juvenile mortality

Background Flow shaping Habitat mosaic Thermal refugia Foodscapes Summary

Flows also affect emigration timing and selection patterns

Suppressed winter flow cues delay emigration timing

Suppressed winter flow cues delay emigration timing

High flows are associated with increased non-natal rearing

Hypothesized mechanisms:

- Increased lateral connectivity
- Earlier/larger freshets (emigration cues)
- Greater need for low velocity rest stops

Morais et al. (in prep) Climate variability and juvenile density drives migratory behavior and habitat use in an endangered salmon

Background Flow shaping Habitat mosaic **Thermal refugia** Foodscapes Summary

Yearlings perform disproportionately well in droughts

Cordoleani et al. (in press) Nature Climate Change - Threatened salmon rely on a rare life history strategy in a warming landscape BackgroundFlow shapingHabitat mosaicThermal refugiaFoodscapesSummary

Yearlings perform disproportionately well in droughts

Cordoleani et al. (in press) Nature Climate Change - Threatened salmon rely on a rare life history strategy in a warming landscape

Aug - 2005-2015

BackgroundFlow shapingHabitat mosaicThermal refugiaFoodscapesSummaryFloodplains provide trophic subsidies to salmon in the Delta

Interview of the set of the set

Sturrock, Ogaz et al. (in review) Floodplain trophic subsidies in a modified river network: Managed foodscapes of the future?

 Background
 Flow shaping
 Habitat mosaic
 Thermal refugia
 Foodscapes
 Summary

Floodplains provide trophic subsidies to salmon in the Delta

Sturrock, Ogaz et al. (in review) Floodplain trophic subsidies in a modified river network: Managed foodscapes of the future?

BackgroundFlow shapingHabitat mosaicThermal refugiaFoodscapesSummaryFloodplains provide trophic subsidies to salmon in the Delta

 Background
 Flow shaping
 Habitat mosaic
 Thermal refugia
 Foodscapes
 Summary

 Floodplains provide trophic subsidies to salmon in the Delta
 Summary

 Background
 Flow shaping
 Habitat mosaic
 Thermal refugia
 Foodscapes
 Summary

 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide trophic subsidies to salmon in the Delta
 Floodplains provide to salmon in the Delta
 Floodplains provide to salmon in the Delta
 Floodplains provide to salmon in the Delta
 Floodplain

BackgroundFlow shapingHabitat mosaicThermal refugiaFoodscapesSummaryFloodplains provide trophic subsidies to salmon in the Delta

BackgroundFlow shapingHabitat mosaicThermal refugiaFoodscapesSummary

Floodplains provide trophic subsidies to salmon in the Delta

BackgroundFlow shapingHabitat mosaicThermal refugiaFoodscapesSummaryFloodplains provide trophic subsidies to salmon in the Delta

 Background
 Flow shaping
 Habitat mosaic
 Thermal refugia
 Foodscapes
 Summary

Summary

- Maintaining / diversifying habitat mosaics and foodscapes from source (*e.g.* upstream thermal refugia to support yearlings) to the sea (*e.g.* restoring marshes & downstream floodplains to support fry) will broaden emigration window and help maintain adaptive capacity – critical for salmon resilience in a changing climate.
- Important to consider both longitudinal connectivity (*e.g.* pulse flows to cue emigration and to transport zooplankton from floodplains downstream) and lateral connectivity (*e.g.* increasing floodplain inundation periods and increasing accessibility to fish) and in coordinated flow and habitat management plans.
- Fry can successfully rear in non-natal habitats (including floodplains, Delta, other tributaries) so long as

(a) the strategy is expressed in the first place

- (b) there is sufficient habitat & food
- In the latter study, the inundation of a managed floodplain (or lack of) played a pivotal role in shaping the juvenile salmon Central Valley foodscape (sensu Rossi 2020).
- Floodplain restoration that increases the extent and productivity of the foodscape is especially important given rising temperatures and projections of more rain/less snow (*i.e.*, increased reliance on early migrants).

THANK YOU FOR LISTENING! Also many thanks to...

Will Satterthwaite (NMFS), JD Wikert (USFWS), Joe Merz (CFS), Tim Heyne (CDFW), Sébastien Nusslé (UCB), Hugh Sturrock (UCSF) Alyssa Fitzgerald (UCSC), Peter Weber (LLNL), George Whitman (UCD), Anthony Malkassian (MIO), Matt Johnson (CDFW) Nick Corline, Ryan Peek, Kelly Neal, Dana Myers, Sierra Schluep, Marissa Levinson (UCD) Cory Graham, Jack Ingram, Patt Brandes, Jeff McClain, Matt Dekar, Denise Barnard and all DJFMP crews (USFWS) Travis Hinkelman & Steve Zeug (CFS) and all Cramer Fish Sciences RST operators Laura Coleman, Keiko Mertz, Krista Schmidt, Bradyn O'Connor, Amanda Gonzales, Matt Salvador, Gabe Saron, Justin Glessner, Miranda Tilcock, Amber Manfree, Malte Willmes, Cathryn Lawrence, Mike Miller (UCD) Steve Tsao, Gretchen Murphey, Crystal Sinclair, Shelly Schubert and everyone on the Mossdale Trawls (CDFW) All crews on the Stanislaus River, Sacramento River and Mill/Deer Creek Carcass Surveys Ted Sommer, Brian Schreier, Jared Frantzich, Brett Harvey, Mallory Bedwell (DWR) Louise Conrad, Pascale Goertler, Annika Keeley (DSC) Alison Whipple, April Robinson and Letitia Grenier (SFEI)

CDFW Proposition 1 Grant (Ecosystem Restoration Program and the Water Quality, Supply, and Infrastructure Improvement Act of 2014, CWC §79707[g]) funded the Delta study

anna.sturrock@essex.ac.uk

Survival, travel time, and entrainment of juvenile salmon smolts migrating within Yolo Bypass

Adam C. Pope Russell W. Perry Dalton J. Hance Western Fisheries Research Center

13 October 2021

U.S. Department of the Interior U.S. Geological Survey

North American Journal of Fisheries Management 25:1493–1504, 2005 © Copyright by the American Fisheries Society 2005 DOI: 10.1577/M04-208.1

Habitat Use and Stranding Risk of Juvenile Chinook Salmon on a Seasonal Floodplain

TED R. SOMMER,* WILLIAM C. HARRELL, AND MATTHEW L. NOBRIGA

California Department of Water Resources, Sacramento, California 95816, USA

Survival of Juvenile Chinook Salmon in the Yolo Bypass and the Lower Sacramento River, California

Myfanwy E. Johnston¹, Anna E. Steel², Matthew Espe³, Ted Sommer⁴, A. Peter Klimley⁵, Philip Sandstrom⁶, and David Smith⁷

Two Case Studies

- 2016 late fall run
 - 3 releases at various points across a flood event
 - Releases into Yolo before and after overtopping
- 2014-18 winter run
 - 5 years of data
 - Fish enter Yolo volitionally

Transactions of the American Fisheries Society

Article 🛛 🔂 Full Access

Juvenile Chinook Salmon Survival, Travel Time, and Floodplain Use Relative to Riverine Channels in the Sacramento–San Joaquin River Delta

Adam C. Pope 🔀, Russell W. Perry, Brett N. Harvey, Dalton J. Hance, Hal C. Hansel,

First published: 05 January 2021 | https://doi.org/10.1002/tafs.10271

From drought to deluge: spatiotemporal variation in migration routing, survival, travel time and floodplain use of an endangered migratory fish

Authors: Dalton J Hance A, Russell W Perry, PhD, Adam C Pope, Arnold J Ammann, Jason L. Hassrick, and Gabriel Hansen Authors INFO &

Publication: Canadian Journal of Fisheries and Aquatic Sciences • 11 August 2021 • <u>https://doi.org/10.1139/cjfas-2021-0042</u>

Telemetry data and Sacramento River flow – 2016

711 total released
 late fall Chinook

Release Date	Release location	n
March 11–12	Tisdale	141
	Yolo Bypass	99
	Verona	0
March 15–16	Tisdale	40
	Yolo Bypass	100
	Verona	100
March 17–18	Tisdale	40
	Yolo Bypass	98
	Verona	99
≈USGS		

2016 Late Fall Run – Entrainment

2016 Late Fall Run – Travel Time

2016 Late Fall Run – Survival

Telemetry data – 2014-18

• 2,662 total released winter run Chinook

2014-18 Winter Run – Entrainment

2014-18 Winter Run – Travel Time

2014-18 Winter Run – Survival

2014-18 Winter Run – Survival

Compare and contrast migration behavior from 2 studies

- Wide differences in flow within a single year versus among years
- Volitional survival and covariates in multiyear study; survival and travel time estimates at very low flows in single year study

- Compare and contrast migration behavior from 2 studies
- Both survival and travel times are high in Yolo Bypass
 - Little change with changing flow in Yolo, unlike in the Sacramento River
 - Need more research at very low flows could survival still be high in Yolo in dry years?
 - "Portfolio effect" later outmigration through Yolo

- Compare and contrast migration behavior from 2 studies
- Both survival and travel times are high in Yolo Bypass
- Entrainment into Yolo Bypass exhibits "step" change behavior
 - Few fish entrained unless stage is a foot or more above
 Fremont Weir
 - Implications for "notch"?

- Compare and contrast migration behavior from 2 studies
- Both survival and travel times are high in Yolo Bypass
- Entrainment into Yolo Bypass exhibits "step" change behavior
- Questions remain
 - Fine scale behavior rearing among migrating smolts?
 - Is survival really high at sub-overtopping flows?

Questions/Discussion

This information provided in this document is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The information has not received final approval by the National Marine Fisheries Service (NMFS) and is provided on the condition that neither NMFS nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

* Final data expected January 2022. Final data available upon request Rachel.Johnson@noaa.gov

Quantifying the role of floodplain rearing to salmon populations

Rachel Johnson^{1,2}, Miranda Bell-Tilcock², Anna Sturrock³, Alexandra Chu², Danhong Ally Li², Carson Jeffres²

Salmon evolved to use a mosaic of connected habitats

Art by Linda Glass

Salmon evolved to use a mosaic of connected habitats

Art by Linda Glass

Stephanie Marie Carlson and William Hallowell Satterthwaite

Altered rearing habitats

Data source: San Francisco Estuary Institute

Altered rearing habitats

Data source: San Francisco Estuary Institute

Managed wetlands & rice

California Rice Commission, Map courtesy of Gabriel Saron, UCD

Rearing habitat matters

Courtesy of Carson Jeffres

March 25, 2016

River

4 days difference in age

Managed Floodplain

Lindsay E. Woodson^{1,*}, Brian K. Wells¹, Peter K. Weber², R. Bruce MacFarlane¹, George E. Whitman³, Rachel C. Johnson^{3,4}

Freshwater growth & condition influences early ocean survival (Woodson et al 2013)

Nursery Role Concept

BioScience

The Identification, Conservation, and Management of Estuarine and Marine Nurseries for Fish and Invertebrates

MICHAEL W. BECK, KENNETH L. HECK, JR., KENNETH W. ABLE, DANIEL L. CHILDERS, DAVID B. EGGLESTON, BRONWYN M. GILLANDERS, BENJAMIN HALPERN, CYNTHIA G. HAYS, KAHO HOSHINO, THOMAS J. MINELLO, ROBERT J. ORTH, PETER F. SHERIDAN, AND MICHAEL P. WEINSTEIN "A habitat is a nursery for juveniles if its contribution [per unit area] to the production of individuals that recruit to adult populations is greater, on average, than production from other habitats in which juveniles occur"

Are managed flood bypasses nurseries for Central Valley salmon?

Critical habitats can be a mystery

Biological Conservation Volume 217, January 2018, Pages 358-362

Short communication

Endangered winter-run Chinook salmon rely on diverse rearing habitats in a highly altered landscape

Corey C. Phillis ^a 😤 🖾, Anna M. Sturrock ^b, Rachel C. Johnson ^{b, c}, Peter K. Weber ^d

Linking habitat use across life stages is hard

Courtesy of Carol Kendall, BDSC 2010

Stomach content δ^{34} S and δ^{13} C

Courtesy of Carol Kendall, BDSC 2010

δ^{34} S is a useful tracer of algae source because the 4 main sources of SO4 have distinctive 834S values. **Bay water** Upstream water **Cache/Yolo Tributaries** 12 10 of POM (~algae) 8 6 4 2 0 δ³⁴S -2 _/ -20 30 50 60 -40 -30 -10 20 40 0 10 **River Mile** FLOW ≊USGS WWTP

Stomach content δ^{34} S and δ^{13} C FLOODPLAIN \times

Bell-Tilcock et al. 2021

Bell-Tilcock et al. 2021

Courtesy of Carol Kendall, BDSC 2010

Juvenile salmon eye lens

Lens formation and diet reconstructions

Floodplain opportunity

Floodplain opportunity

Floodplain opportunity

Adult Survivors: Eyes and Ears

- Upper Sacramento winter and fall run
- Outmigration years 2016 and 2017
- Escapement years 2018 and 2019

Evidence for floodplain rearing in winter run

Evidence for floodplain rearing in fall run

Floodplain opportunity

Survivors

Floodplain opportunity

Survivors

The Forgotten Bypass Sutter

Map courtesy of Eric Holmes

Map courtesy of Eric Holmes

The Forgotten Bypass Sutter

Imagery from planet.com

Proportion of juveniles that used floodplains

Many management applications

Photos courtesy of USFWS

Next Steps

- Establish differential benefit of offchannel access across more populations (Butte Creek Spring Run)
- Better understand how timing of outmigration, habitat use, & survival are related
- Scale up the technique to better understand how management/ restoration actions affect population dynamics.

Thank you ! Funding provided by: CDFW Proposition 1 Grant # P1896030

- CDFW
 - Doug Killam and the Carcass Crew
- USFWS
 - Kevin Niemela and the Carcass Crew
 - DJFMP Chips Island Trawl Crew
- UCD -
 - Team Ears George Whitman
 - Joy Mathews UCD SIF
 - Team carcass survey- Laura Coleman, Marissa Levinson, Gabriel Saron