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How juvenile salmon use Central
Valley floodplains
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Key points N B P

* The floodplain is a dynamic habitat

* Flow pulses distribute salmon during
the flood season

* Salmon diets vary with location and
flow conditions — salmon are
opportunivores

* Consequences of slow growth




Chinook Salmon

Anadromous life cycle Endemic range in N. America
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Four salmon runs in the Chinook Salmon life history diversity
California Central Valley

EALL RUN Flood season

Rearing & migration

LATE FALL RUN

Rearing & migration

WINTER RUN

Rearing & migration

SPRING RUN

Rearing & magration

Figure from Herbold et al. 2018



Juvenile chinook migration timing

Empirical cumulative distribution functions
for unmarked juvenile salmon from brood
years 2004-2019 caught at Knights landing
rotary screw trap

Migration timing primarily Dec-April

Image from calfish.org
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=  Remnant off-channel habitat in flood
bypass system composed of
agriculture and wetland substrates.

= Accessible to salmon via weir system

m  Butte Creek salmon have connected
river-wetland corridor

Tisdale weir overtopping
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Proportion inundated
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Flow inundation relationship

/

I
30K

T
40K

I I
S0K 60K

Flow (cfs)

T
70K

I
80K

Discharge (cfs)

75k -
50k -
25k -

[\

W

=~
1

N L
SWnoOWn O
~AARA N
1 1 ] 1 1

(G|
S W
=~ =
1 1

25k -

S
=~
1

75k -
50k -
25k =
Ok -
75k -
50k -
25k -
Ok -
75k -
50k -
25k -
Ok -

Oct

Nov D

Sacramento River hydrology

! TR
h A

h
a
i e
Y
YT ™

Discharge data from the Sacramento River at Verona USGS gauge: 11425500

10t

(AN

¥10¢

clroc

910¢

L10¢C

810¢

610C

0c0¢

120¢

ec Jan Feb Mar Apr May Jun Jul Aug Sep

DWR Sacramento Valley Water Year
Hydrologic Classification Index

Source: https://cdec.water.ca.gov

Below normal
Dry

Critical
Critical

Below normal

Below normal

Dry

Critical*

*Anticipated by me



IC

is dynam

The bypass floodplain

0K -
50 -
0k -

20k -

(¢-,w 310) uopyuerdooy (es %) O

Apr 15

Apr 01

Mar 15

Mar 01




Flow distributes juvenile salmon

Knights Landing Rotary Screw Trap with Wilkins Slough (WLK) Daily Average Flow
Unmarked Fry/Smolt Chinook
Total 4,091 for Sampling Dates: 2018-08-27 to 2019-06-19
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Preliminary data from CDFW via StreamNet and CDEC, subject to revision. www.cbr.washington. edu/sacramento
Turbidity is a discrete measure. KNL measured in FTU which should be roughly equivalent to NTU. 17 Sep 2021 08:35:07 PDT
Alternative criteria applied to categorize run-identified Chinook as fry/smolt juvenile: 8/1-10/31 fall only,
11/1-7/31 sum of late-fall, fall and spring runs.

Source: SacPAS at www.cbr.washington.edu



Salmon numerically dominate the
total catch in the Yolo Bypass during
and after winter overtopping events

DWR crew sampling via beach seine for the
Yolo Bypass fish monitoring project
Photo credit: Jared Frantzich

Flow distributes juvenile salmon
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Wild fish sampling from Yolo (2016-17) and Sutter (2018-21) Bypasses

-

Methods:

e Opportunistic sampling during and after flood
events using beach seines and fyke net traps
* Fin clips taken for genetic run identification

Limitations:

e Access limited to margins during flood events
* Low take of listed runs on permits
* Diets based on fall run sized fish only




Wild fish sampling from Yolo (2016-17) and Sutter (2018-21) Bypasses
Methods:

Opportunistic sampling during and after flood
events using beach seines and fyke net traps
Fin clips taken for genetic run identification

~pary doyw?d

Limitations:

Access limited to margins during flood events s e e o
Low take of listed runs on permits

Diets based on fall run sized fish only

Habitats sampled: | i
* Wetlands
Agricultural fields

Bypass canals
Weirs



Wild caught salmon from Sutter and Yolo Bypasses 2016-2021

General patterns:

All 4 runs observed in the Bypasses
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Wild caught salmon from Sutter and Yolo Bypasses 2016-2021

Fall Late-fall Winter Spring | Unknown  Total

‘ Agriculture 46 5 6 28 125 210 ‘

Canal 1 1 0] 17

Weirs 21 1 19 3




Diet composition

1.0 -

General patterns: Copepody

e Salmon caught in habitats showed
zooplankton dominated diets 0.5
%
e Salmon caught in bypass agricultural and canal %
habitats had variable diets depending on water 0.0

conditions

* Salmon caught entering the bypasses at the
weirs had diets dominated by aquatic and -0.57
terrestrial insects

| Amphipoda
-1.0 -0.5 0.0 0.5 1.0
NMDSI

®  Agriculture © Weir Wetland @  Canal



Growth rate variation results from diverse rearing habitats

Enclosure reared salmon in Sutter Bypass
2019-2021 experiments
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Challenges for late season migrants

25+
Seasonal rise in Sacramento
River and Delta water
temperatures in the spring i The “Nobriga” line

Daily mean water temperature at Sherwood Harbor
Data source: cdec.water.ca.gov
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“Chinook Salmon smolts must
transit the Delta before water
temperature reaches 20°C or

mortality will be nearly 100%”

Daily mean temperature (C)

10 A
- Nobriga et al. 2021

Oct Nov  Dec Jan Feb Mar Apr May Jun Jul  Aug Sep

Wet Above normal === Below normal === Dry === Critical



Challenges for late season migrants

Chinook Salmon Competitor Predator

Yolo Bypass fish monitoring program
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Using the past to predict the future

Histogram of mean Dec-Apr runoff at Verona
since completion of the Oroville Dam (1968)

Frequency
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Years with overtopping events

Decreasing trend in water years per decade
with at least one overtopping event
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Agency partners/fund
&
Private landowners

Staff/collaborators

It takes two to make the seine go

ers

Knaggs Ranch

Watershed

( Stiences

{;3‘1 River Garden Farms

Davis Ranches
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\k California Rice

CALIFORNIA TROUT

State & Federal Contractors . = =
Water Agency ’

e
——

Next Generation Foods

Carson Jeffres, Rachel Johnson, Flora Cordoleani, Matthew Salvador,
Miranda Bell-Tilcock, Gabriel Saron, Mollie Ogaz, Nicholas Corline, Rosa
Cox, Emma Cox, and many more!
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Aqguatic Food Webs

 What you observe in the aquatic
food web is a product of the
physical environment




Aqguatic Food Webs

 What you observe in the aquatic
ecology is a product of the
physical environment

* Species in California have evolved
to take advantage of a
Mediterranean climate

30.03 inHg— [ 19°C @ 10724712 12:00 PM LWCUS

. T— - i x

30.05 inHg— [ 9°C @ 12703712 01:00 PM LWCUS



Aqguatic Food Webs

 What you observe in the aquatic
ecology is a product of the
physical environment

* Species in California have evolved
to take advantage of a
Mediterranean climate

* Understanding physical processes
can help community composition
and food web structure




oodplain: Land along a river subject to seasonal
inundation




Riparian Zone Habitat:

HISTORICALLY: | o
e Much of the Sacramento N

and Other Floodplain Habitat
Wetlands Mapped Within Riparian Zone

Valley was wetland and e o
Creek _ Other Floodplain Habitat

Big Chico™ - Other Lowland Habitat
Creek

riparian habitat N Sy

Willows

Bear River

Cache Creek

Futah Creek

Sacramento Valley Historical Rivér Flbndplain Ecosystem

The Bay Institute, 1998




TODAY: > =

M
Creek

Current Wetland

o of floodplains are no long available . o B

Rivers & Streams

Wildlife Refuge
== ug

® Converted to agriculture and urban g N P
development. g maae et

river floodplain habitat that is converted
mastly to agricultural and urban uses.

Sacramento |
River

Bear River

Miles
: Dt

Sacramento Valley Current River Floo

The Bay Institute, 1998



Floodplains in California

* Extent of floodplain habitat greatly reduced




* Hydrologic context

* Flood timing, duration, and location dictate opportunities for food web
abundance and composition.

Jan Feb Mar




Floodplain Food Webs
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Floodplain Food Webs




Floodplain Food Webs
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Conceptual Model of Floodplain Food Web
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Cosumnes River Floodplain Food Web
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Food Web Over Time

Chlorphylla Zooplankton Fish benefit
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Sources of Carbon

Juvenile

DOC (ppm)

CHL-a (ug/L)

_ JIETEe" Zooplankton
invertebrates

By Lizzie Harper By (Photo: Paul Hebert)
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By NASA. Credits: University'of—Rhode Island/Stephanie Anderson




Food Web Duration

Chlorphyll-a Zooplankton Fish benefit
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Sources of Carbon

Juvenile
Chinook

DOC (ppm)

CHL-a (ug/L)
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Steeping the Tea




Steeping the Tea
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Floodplain Food Web

Zooplankton/
Invertebrates
Phytoplankton/

Rotifers, Ciliates,

Bacteria, Flagellates= e orbon
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Floodplain vs River Food Webs

* Where o.loef our ’.’primary Chlorophyll
production” coming from?

* The Sacramento River follows §E |

Rice Field
Sacramento River

traditional models of in situ
photosynthesis.

Chloraphyll ug

Zooplankton/

Invertgbrates

QD
—m S

Phytoplankton/
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Food Web

Location
Rice Field

Sacramento River
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Grazing : Primary Production

|

Location
Rice Field
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Food Web

Dissolved Organic Carbon

 Where is our basal carbon (aka
energy) coming from?

e The Sacramento River follows
traditional models of
autotrophic production.

* Floodplain “fueled” by mix of
autotrophic and heterotrophic
food webs




Detrital Sources in the Food Web

* Model developed using USGS

Streammetabolizer package in R

* uses inverse modeling to estimate
aquatic metabolism (photosynthesis and
respiration) from time series data on
dissolved oxygen, water temperature,
depth, and light.
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Food Web Composition
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Lack of Permanent Fish Predators

Without Fish

With Fish

FREQUENCY = %

FREQUENCY — %

1942
NO ALOSA

0.4

DOMINANT
ZOOPLANKTERS
—-

Digptomus J

04 ATnOkS LENGTH
mm.

Epischura

- L

ALOSA (= POMOLOBUS)
AESTIVALIS

POPULATION ESTABLISHED BY 1955

UPPER

DOMINANT
ZOOPLANKTERS
-

i

1.8
——

Leptodora

5 mm.

Brooks and Dodson 1965



Food Web Composition

Rice Field




Cladocerans are Indicators of Off-Channel Habitats

Species Specificity Fidelity  P-value Species Specificity Fidelity P-value

1.0 0.000D> Ilyocryptus sp. 0.74 0.67 0.043
Rotifera 0.98

Simocephalus sp. 0.96

Acanthocyclops 0.96
sp.
Bosmina sp. 0.95

Ceriodaphnia sp. 0.95

Calanoid sp. 0.90
D. mendotea 0.99 Corline et al. 2020

Specificity-How good a indicator the species is for the site group. Ex. We found D. pulex so we can be pretty certain that
this sample is from a off-channel site.

Fidelity-Probability of finding the species in the said group. le if | go to a off-channel habitat what is my probability of
finding D. pulex.



Off-Channel

Stress = 0.1

les

| 10B1L 21 ELAAW

| Uejdpooj{ g 500
L= A A T

[ JOBIL £} 1AM

| 2014 91 98aA
8314 9 E4A

| @214 8} ¥#8AA

| 8214 8} BAA
2l 9l LHA
a1y 9L §4AA

| Lejdpoold 21 A
ally L} BLLAS
iy L} INKW

[ 224 S GHA
ally Gl vHA
Bi4 S| SHA

| 8014 L} BBOY

land gl S

lany /1 JES

19801 21 LLAA

land /1 eqop

land L1 o

land /1 Zqow

lany /1 505D

-
-
-
-
O
O
O
-
-
©
e
O

ilar Off-

1M

S

Dendrogram of River, Tract, & Floodplain Sites




You Are What You Eat
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* Contents from a single salmon
e ~1200 individual cladocerons

Jeffres et al. 2008



Stomach content of salmon (2014-16)
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You Are What You Eat

Dietary sources of amino acids in juvenile Chinook
Salmon in CV habitats

Estimate
® Algae
Bacteria

Fungi

Group

— Algae
-+ Bacteria
==+ Fungi

- - Plant

B. Nakamoto unpublished data

'Juvenile N
Chinook

&

e Zooplanktor

" invertebrates

By Lizzie Harper By (Photo: Paul Hebert)
Detritus Bacteria
S 7R\




You Are What You Eat

Wetland & Floodplains River Hatchery Ocean

[ 3\ \
> Juvenile

20 y Chinook

e Zooplankto

invertebrates

Bell-Tilcock et al. in press



Food Web Considerations

* Timing
* When flooding happens

* Duration
* How long a flood lasts

* Magnitude
* Volume of river discharge

FALL RUN

LATE FALL RUN

WINTER RUN

SPRING RUN

Rearing & migration

Rearing & migration

Rearing & migration

Rearing & migration

J
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Figure from Herbold et al. 2018




Food Web Considerations

Hydrograph  Chlorphylla Zooplankton Fish benefit

* Timing
* When flooding happens

* Duration
* How long a flood lasts

* Magnitude
* Volume of river discharge




Food Web Considerations

* Timing
* When flooding happens

* Duration
* How long a flood lasts

Jan Feb Mar

* Magnitude
* Volume of river discharge

Mar
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Satellite Imagery by Matt Clark NASA.gov



Future of Food Webs

* Reconciled System

— We are not going back VALY e SACRAMENTO

GOLD REGION.

— We ultimately control the system and decide how
it functions

— Restoration of processes




Future of Food Webs

* Reconciled System

— We are not going back

— We ultimately control the system and decide how W:’
it functions e

— Releases
— Restoration of processes

* Diversity of habitat types

I”

— “natural” floodplains

— Multi-benefit floodplains




Future of Sac Valley Food Webs

o
* Reconciled System e
<
— We are not going back =
— We ultimately control the system and decide how ;"“
it functions ‘ne it
— Releases A
-
— Restoration of processes ~

* Diversity of habitat types

IH

— “natural” floodplains

— Multi-benefit floodplains
e String of Pearls

— Connecting habitats throughout the system \




Questions ?
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Juvenile passage: fish movement onto the floodplain

Dave Smith
USACE-ERDC
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Project Objectives

Use measured fish and hydraulic data to
evaluate future conditions with a
entrainment notch in place.

Estimate relative entrainment for notch
scenarios and alternatives and validate
against other studies in Sacramento River.

Describe notch features that influence
entrainment (size, orientation, location,
flow etc).

Develop information for next phase
(engineering and evaluation of accuracy
and precision).




Knights Landing Alt 1. East 6,000 cfs Intake
' fF Alt 2. Central 6,000 cfs Intake
Alt 3. West 6,000 cfs Intake

: Alt 4. West 3k Intake - Managed Flow Capped at 3,000 cfs
Alt 5. Central Multi-Gate, 3,400 cfs
e Alt 6. West 12,000 CFS, Intake
"Sutter Bypass
Fremont Weir/
Al 2 "y
Yolo B = Alt 1
olo Bypass e
Alt3 Fremont Weir
/ Alt4
;f Alt 6

Google Earth




Model Domains TSA

Knights - ]

\ =l |

* Spatial and temporal overlap with fish i ==
telemetry data =

e 2015 was contained within levees and
did not contain Sutter or Yolo Bypass

e 2016 included Sutter inflows and Yolo
outflows

* Boundary conditions provided by
TUFLOW




2D model calibration and

validation

» Data for stage and velocity used

36
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SRH predicted values, mis

Low Discharge, All Transects
Velocity along Easting

(a) U (easting) at low-discharge
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observed values, m/s
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(e) U (easting) at high-discharge

Low Discharge, All Transects
Velocity along Northing

SRH predicted values, m/s
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(d) V(northing) at medium-discharge
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Velocity along Northing

RH predicted values, m/s
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(f) V(northing) at high-discharge




2016 Sutter Influence

Knights Landinginflow

2 y

Feather River inflow

Sutter Bypass inflow

New terrain data

Verona outflow |

/

Sutter Discharge (cfs)
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Fish telemetry C g
S0 1466t 18.4ft |

2015 ﬁone release group) and
2016 (two release groups) T

2015
e 14.9 ft stage (low) .
e Late fall and winter Chinook

2016
* 18.4 and 26.9 ft stage
» Late fall Chinook

Conclusions 000+

 Higher stage increases speed over T e
ground

* Fish are skewed toward the . . . . .
outside bend (DZC mean > O) Feb 01 Feb 15 Mar 01 Mar 15 Apr 01

Date (PST)
* Stage has small influence on
spatial distribution

2015 2016 - low 2016 - high

Frequency

o

o

o
L}

w
o
L

Release
Event
[}

2

River Stage (ft)
>
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Calibration/Validation Approach

* Used 2015 telemetry and hydro data to calibrate to one stage (14.9 ft)
* Used 2016 telemetry data at higher stages to validate 2015 calibration

* Fish release/removal
* 500 fish/run released at Knights Landing

* Ensemble development
* Multiple runs with different behaviors

* Fish size/species
* Fish size set at 124 mm, mean LFC/WC size in Steel et al (2017).

* Behavior rule
* BIl:Swim downstream at |.5 BL/s £ ¢
* B2:Swim toward faster water, increased swim speed
* B3:swim toward slower water (downstream direction), increased swim speed

* Stochasticity
* Ornstein-Uhlenbeck (OU)

* Process

* Compare measured Speed Over Ground, spatial distribution between measured and model and adjust stochasticity,
behavior, and speed to match measured fish data

* Calibrated model used Bl only with fixed OU coefficients



Results

e Speed Over Ground

e 2016 validation matched
measured fish speed over
ground

* No difference in measured
ground speeds

Ground speed (m/s)
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Modeled

Measured

Results — spatial distribution
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Using the calibrated/validated model

e Build 2D models for each
EIS/EIR alternative for 6
stages representing6 notch
flows

 Stages representative of
wide range of hydrologic
conditions at Fremont Weir

* Run and compute
entrainment as percentage
of fish versus ration of
notch flow/river flow
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Examples: EIR/EIS 1 (East) and 3 (West
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Entrainment results

* Across all stages, entrainment
is 1to 38%

* Higher flows at a given stage
increases entrainment

 For a given flow/stage notch
entrainment is insensitive to
location

* Entrainment is dependent on
fish location In cross section

e Entrainment is dominated by
advection-suggest slower water
or bigger fish will display more
behavior

Entrainment (%)

14

16

Entrainment estimates

oogle Earth
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Stage(ft, NAVD88) Fremont Weir Gage
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30
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Building confidence in the entrainment

estimates

Used entrainment estimates elsewhere
in Sacramento to gauge magnitude of
expected entrainment as function of
flow — Independent validation

Plotted EIS 1 entrainment estimates on
same scale as measured entrainment at
Sutter and Steamboat Sloughs

Suggest that entrainment estimates at
Freemont Weir are realistic

This is important — suggest accurate
forecast are possible and that further
engineering evaluation can improve
entrainment

Entrainment ((%)
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[J Cavallio et al (2015)
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Sutter USGS 2014
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* OPT1B-D
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Floodplains

Floodplains are the most impacted geomorphic feature of
rivers

Critical ecosystems services lost while other economic
services gained

Ecological forecast are not readily synchronized with
engineering design — critical shortcoming

How do you forecast ecological outcomes for conditions
you cant measure?

* This project is one method forward
* Mechanistic with simple ecological outcomes (not populations)
* Post construction validation is planned

Fremont Weir/Yolo Bypass work suggest a measured
approach to ecosystem services/economic services is
possible

*Knights Landing

Sutter Bypass

Fremont Weir.

Yolo Bypass
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_ Flow shaping Habitat mosaic Thermal refugia Foodscapes Summary

Presentation outline

 |ntro. Evolutionary = recent history of salmon in the California Central Valley

e Flow sh ap N J. Sturrock et al. (2020) Global Change Biology. Unnatural selection of salmon life histories in a
modified riverscape

e Habitat mosaic. morais et al. (in prep) Climate variability and juvenile density drives migratory behavior and
habitat use in an endangered salmon

e Thermal refu g lA. Cordoleani et al. (in press) Nature Climate Change Threatened salmon rely on a rare life
history strategy in a warming landscape.

* Foodscap €S - The multifaceted benefits of floodplains to early migrants. Sturrock, Ogaz et al.
(in review) Floodplain trophic subsidies in a modified river network: Managed foodscapes of the future?

*  Summary.




Evolutionary history of Pacific salmonids

Evolution

Why are there so many Pacific salmon species?

Dynamic
topography

Trait

diversity Speciation

Photos Couresy of T. Quinn www.pugetsound.edu/files/resources/salmonevolution.jpg
+ disturbance regimes
+ natal homing and local adaptation



_ Flow shaping Habitat mosaic Thermal refugia Foodscapes Summary

Evolutionary history of Pacific salmonids in California

ADULT RETURN TIMING JUVENILE EMIGRATION TIMING

)

HIGH LAT

Fall run y N
Late Fall run S
S i Winter run e —
| Springrun | <

Steelhead A

JASONDJFMAMJ

Data sources: Vogel and Marine, 1991; Hallock, 1983; CDFG, 1993

Increasing
climatic
variability
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Recent history of salmonids in California

860s-1880s

o

MODERN CHANNEL LAYERS
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Background

Low flows associated with increased juvenile mortality

. Flowshaping Habitat mosaic

. Dams (sized by reservoir capacity)

—— Major rivers

B Current salmon distribution
Historic salmon distribution

[ countries

housands)

Juvenile production
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Stanislaus River
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\oW- e d\ategw
v\O p‘a

2500 5000 7500
Spawner density

Thermal refugia

Foodscapes

Sturrock et al. 2020 Global Change Biology - Unnatural selection of salmon life histories in a modified riverscape

Summary
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Low flows associated with increased juvenile mortality

<3

. Dams (sized by reservoir capacity)

—— Major rivers

[ Current salmon distribution
| Historic salmon distribution
[ countries

—ot =B

90,000 1 San Joaquin River Basin [ 3500

- 30,000
- 25,000
- 20,000

15,000

10,000

5,000

No. adult returns to the SJ basin

Flow at Vernalis 2.5yrs prior (cfs)

Sturrock et al. 2015 PLOS One

Sturrock et al. 2020 Global Change Biology - Unnatural selection of salmon life histories in a modified riverscape
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Flows also affect emigration timing and selection patterns

Yearling Leave late

Smolt |
>/75mm

Parr |
55-75mm

Fry

<55mm Leave early



Suppressed winter flow cues delay emigration timing

Unimpaired flow

WET (1999) DRY (2009)
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Sturrock et al. 2020 Global Change Biology - Unnatural selection of salmon life histories in a modified riverscape



Suppressed winter flow cues delay emigration timing

Unimpaired flow Observed flow

WET (1999) DRY (2009)
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Sturrock et al. 2020 Global Change Biology - Unnatural selection of salmon life histories in a modified riverscape
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Suppressed winter flow cues delay emigration timing
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High flows are associated with increased non-natal rearing

No. winter run

i i : 2= 0.87 .
Hypothesized mechanisms 05 2dult otoliths
.. 2005—® | d
* Increased lateral connectivity £ .. analyze
* Earlier/larger freshets S © - ; ;88
(emigration cues) %E | ® 300
* Greater need for low velocity c 5
rest stops '§ B 0.3 Mean Aug-Jan
4= g Sac River
Cc flow (cfs)
® S 0.2
= 300
250
0.1 200

150 200 250 300
Mean flow Aug-Jan (cms)

Morais et al. (in prep) Climate variability and juvenile density drives
migratory behavior and habitat use in an endangered salmon



Yearlings perform disproportionately well in droughts

ooos! Freshwater Exit

2018

0.006{ 2008 2013

2
2 0.0041
o]
a
0.002
0.000
500 600 700 800 900
Otolith radius (um)
N v J v J
Smolts Yearlings

Cordoleani et al. (in press) Nature Climate Change - Threatened
salmon rely on a rare life history strategy in a warming landscape



Yearlings perform disproportionately well in droughts

ooos! Freshwater Exit

2018
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Cordoleani et al. (in press) Nature Climate Change - Threatened
salmon rely on a rare life history strategy in a warming landscape

But thermal
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are limited
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shrinking
rapidly...
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Floodplains provide trophic subsidies to salmon in the Delta

rnsmensesn | Juvenile salmon sampled by Kodiak Trawl, beach seines and
@ LowerSac Above ‘ . . .
; owersin [ midwater trawl in 2014 — 2021 (showing 2014-18 here).
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@ Zooplankton Sites
\ Cosumnes
‘ Mﬂoodplam
(00
8 350
s)
< 300
<
L 250
2
3 200
t 150
\ -}
‘ ; © 100
LR N 3
! ? .Fle'mon! :.\ 13{.1, /) ) 7 :Z./ g NG %/ T) 50
A o e e =g Y (o
30k 2 I',""n AP ™ P\ 0
km * LB U ey d g =
122.2'W 122 _- = AA-:-.;a‘.-.v 121.6'W 121.4 121.2°W 121w Ol'Jan Ol'Feb Ol'Mar Ol'Apr Ol_May Ol_Jun

Sturrock, Ogaz et al. (in review) Floodplain trophic subsidies in a modified river network: Managed foodscapes of the future?
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Summary

Floodplains provide trophic subsidies to salmon in the Delta
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Floodplains provide trophic subsidies to salmon in the Delta
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Floodplains provide trophic subsidies to salmon in the Delta
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Summary

Floodplains provide trophic subsidies to salmon in the Delta
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Floodplains provide trophic subsidies to salmon in the Delta
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Floodplains provide trophic subsidies to salmon in the Delta
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Floodplains provide trophic subsidies to salmon in the Delta
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Summary

Maintaining / diversifying habitat mosaics and foodscapes from source (e.g. upstream thermal refugia to
support yearlings) to the sea (e.g. restoring marshes & downstream floodplains to support fry) will broaden
emigration window and help maintain adaptive capacity — critical for salmon resilience in a changing climate.

Important to consider both longitudinal connectivity (e.g. pulse flows to cue emigration and to transport
zooplankton from floodplains downstream) and lateral connectivity (e.g. increasing floodplain inundation
periods and increasing accessibility to fish) and in coordinated flow and habitat management plans.

Fry can successfully rear in non-natal habitats (including floodplains, Delta, other tributaries) so long as
(a) the strategy is expressed in the first place B
(b) there is sufficient habitat & food

In the latter study, the inundation of a managed floodplain (or lack of) played a pivotal role in shaping the
juvenile salmon Central Valley foodscape (sensu Rossi 2020).

Floodplain restoration that increases the extent and productivity of the foodscape is especially important
given rising temperatures and projections of more rain/less snow (i.e., increased reliance on early migrants).
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Two Case Studies

e 2016 — late fall run
— 3 releases at various

pomts across a flood Juvenile Chinook Salmon Survival, Travel Time, and
event Floodplain Use Relative to Riverine Channels in the

: Sacramento-San Joaquin River Delta
— Releases into Yolo before
and after overtopping

° 201 4'1 8 — WI nter run From drought to deluge: spatiotemporal variation in migration

_ routing, survival, travel time and floodplain use of an endangered
5 yearS Of data migratory fish

of the
American Fisheries Society

Article @ Full Access
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Telemetry data and Sacramento River flow — 2016
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2016 Late Fall Run — Entrainment
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2016 Late Fall Run — Survival
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Telemetry data — 2014-18

o 2.662 total released winter run Chinook
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2014-18 Winter Run — Entrainment

vs — Flow (Freeport) Overtopping Flow
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2014-18 Winter Run — Travel Time
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2014-18 Winter Run — Survival
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2014-18 Winter Run — Survival
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Summary

« Compare and contrast migration behavior from 2 studies

— Wide differences in flow within a single year versus among
years

— Volitional survival and covariates in multiyear study; survival
and travel time estimates at very low flows in single year study

= USGS



Summary

« Compare and contrast migration behavior from 2 studies

» Both survival and travel times are high in Yolo Bypass

— Little change with changing flow in Yolo, unlike in the
Sacramento River

— Need more research at very low flows — could survival still be
high in Yolo in dry years?

— “Portfolio effect” — later outmigration through Yolo

= USGS



Summary

« Compare and contrast migration behavior from 2 studies
» Both survival and travel times are high in Yolo Bypass

* Entrainment into Yolo Bypass exhibits “step” change
behavior

— Few fish entrained unless stage is a foot or more above
Fremont Weir

— Implications for “notch™?

= USGS



Summary

« Compare and contrast migration behavior from 2 studies
» Both survival and travel times are high in Yolo Bypass

* Entrainment into Yolo Bypass exhibits “step” change
behavior

e Questions remain

— Fine scale behavior — rearing among migrating smolts?
— Is survival really high at sub-overtopping flows?

= USGS



Questions/Discussion

2 USGS



This information provided in this document is preliminary or
provisional and is subject to revision. It is being provided to meet
the need for timely best science. The information has not received
final approval by the National Marine Fisheries Service (NMFS)
and is provided on the condition that neither NMFS nor the U.S.
Government shall be held liable for any damages resulting from
the authorized or unauthorized use of the information.

* Final data expected January 2022. Final data available upon request Rachel.Johnson@noaa.gov



Quantifying the role of floodplain
rearing to salmon populations

University
of Essex
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Salmon evolved to use a mosaic of connected habitats

Leave Late

HIGH LAT

LOW LAT

Spence and Hall 2010
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Salmon evolved to use a mosaic of connected habitats

Leave Late

HIGH LAT

LOW LAT

Spence and Hall 2010

Weakened portfolio effect in a collapsed salmon
population complex

Art by Llnda GIaSS Stephanie Marie Carlson and William Hallowell Satterthwaite



Altered rearing habitats

Compare the Delta
Across Eras

Show All
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Data source: San Francisco Estuary Institute



Altered rearing habitats
Compare the Delta

Across Eras

Freshwater wetland | > Agriculture
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Rearing habitat matters

River

— 4 days difference in age

Managed Floodplain

Courtesy of Carson Jeffres

MARINE EC( aY OGRESS SERIES

ML co g Ser Published July 30
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FREE
ACCESS

Size, growth, and origin-dependent mortality
of juvenile Chinook salmon Oncorhynchus
tshawyitscha during early ocean residence
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Freshwater growth & condition

Influences early ocean survival
(Woodson et al 2013)



Nursery Role Concept

BioScience

The Identification,

“A habitat is a nursery for juveniles if its

Conservatlon, and ] contribution to the production of
Management of Estuarine individuals that recruit to adult populations is
and Marine Nurseries for greater, on average, than production from other

habitats in which juveniles occur”

Fish and Invertebrates

MICHAEL W. BECK, KENNETH L. HECK, JR., KENNETH W. ABLE, DANIEL L. CHILDERS, DAVID B. EGGLESTON,
BRONWYN M. GILLANDERS, BENJAMIN HALPERN, CYNTHIA G. HAYS, KAHO HOSHINO, THOMAS J. MINELLO,
ROBERT J. ORTH, PETER F. SHERIDAN, AND MICHAEL P WEINSTEIN

Are managed flood bypasses nurseries for Central Valley salmon?



Critical habitats can be a mystery

Current

Spawning Habitat| = : Biological Conservation

Hislonca 2 AN > * - “Wolume 217, January 2018, Pages 358-362
Spawning “:‘I.".l.'»“l'\‘

* Critical Habitat | 3

Redding

Endangered winter-run Chinook salmon rely on
diverse rearing habitats in a highly altered
landscape
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Linking habitat use across life stages is hard

1) Unique habitat signature

2) Preserved in archival tissue
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Seeing The World Through Salmon Eyes

Dissecting eyes is helping measure what fish eat—and the value of different habitats.

Wetland & Floodplains Riyer Hatchery Ocean
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Seeing The World Through Salmon Eyes

Dissecting eyes is helping measure what fish eat—and the value of different habitats.
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Seeing The World Through Salmon Eyes

Dissecting eyes is helping measure what fish eat—and the value of different habitats.
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Juvenile salmon eye lens

Lenses look like an onion




Lens formation and diet reconstructions

Floodplain Multiple habitats

River
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Delamination




ty

tun

Floodplain oppor

2016

150000
100000
50000

JI9\ JUOWBI
Jano abueyosiqg

Apr

Mar

Feb

Jan

Dec

ajepsi] je
uny Jajuim Ajieq

Apr

Mar

Feb

Jan

Dec

600
400
200

ajepsiy je
uny |jed Ajreq

Apr

Mar

Feb

Jan

Dec




ty

tun

Floodplain oppor

2016

150000
100000
50000

JI9\ JUOWBI
Jano abueyosiqg

Apr

Mar

Feb

Jan

Dec

ajepsi] je
uny Jajuim Ajieq

Apr

Mar

Feb

Jan

Dec

600
400
200

ajepsiy je
uny |jed Ajreq

Apr

Mar

Feb

Jan

Dec




ty

tun

Floodplain oppor

3 - 3 3
= ) ]
r

1 — |
S o o
< = < <
c c c
1] © 1]
= = -

o o o o wn o wn o (=4 [= (=]

(=] (=] (=] - - (=] =] =]

o o o (o] N -

(=] (=] (=]

[T o wn

- -

JI9pA JUOLIALH Buipue sybiuy e BuipueT sybiuy je

Jano abaeyosiqg uny Jajuips Ajreq uny [1ed Ajieq
g g g
< < <

4
| . | ) |
© © [
= = =
Q2 0 2
[7] () [
(TR L. [N
16 —|
c c c
5 5 'E
1) 5 1)
[}] Q
a a a
o < ™~ o

150000
100000
50000

JI9\ JUOWBI
Jano abueyosiqg

alepsiL je
uny Jajuip Ajreg

600
400
200

ajepsiy je
uny |jed Ajreq




CALIFORNIA

| Adult Survivors: Eyes and Ears

 Upper Sacramento winter and fall run
e Qutmigration years 2016 and 2017
 Escapement years 2018 and 2019




Evidence for floodplain rearing in winter run

Bl Floodplain

. Bl River
Hatchery Winter Run 2017 Wild Winter Run 2017

25 25

Layer number Layer number



Evidence for floodplain rearing in fall run

Coleman Hatchery Fall Run 2017
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Proportion of adults that used floodplains

2016 2017
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Floodplain opportunity Survivors
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Floodplain opportunity Survivors
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Proportion of juveniles that used floodplains

Bl Floodplain
B River

Fall Run Fall Run
2016 2017
(63) (73)




Quantifying the role of floodplains as nursery

habitats for salmon populations
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Many management applications




Next Steps

o Establish differential benefit of off-
channel access across more
populations (Butte Creek Spring Run)

« Better understand how timing of
outmigration, habitat use, & survival are
related

« Scale up the technique to better
understand how management/
restoration actions affect population
dynamics.




N Thank you !

N Funding provided by: CDFW
it Proposition 1 Grant # P1896030
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— Doug Killam and the Carcass Crew
« USFWS

— Kevin Niemela and the Carcass Crew
— DJFMP Chips Island Trawl Crew
« UCD —
— Team Ears — George Whitman
— Joy Mathews — UCD SIF

— Team carcass survey- Laura Coleman,
Marissa Levinson, Gabriel Saron
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