Winter-run Chinook Salmon in the Upper Sacramento River in 2023

Carcass and Redd Surveys
Methods, Analysis, and Results

DOUG KILLAM
California Dept of Fish and Wildlife

Winter-run Chinook past and present

- Originally existed only in the Sacramento River system that included the Little Sacramento, Fall, Pit and McCloud Rivers and Battle Creek.
- Require cool clean fresh water under 56 degrees over the summer months.
- Only exist in this area....no where else in world... genetically unique
- Livingston Stone was a federal biologist who developed the Baird Hatchery on the McCloud River and eggs from this hatchery were sent around the world.
- Currently only occur in the Sacramento River watershed below Keswick Dam. Shasta Dam blocks all access to winter-run habitat upstream. Winter-run spawners downstream of Keswick first noted in May of 1945 after completion of dam. Cool tailrace water substituted for headwater springs transferring habitat upstream of Shasta to the Redding area.
- Listed as Endangered in 1989 as drought, pollution, water diversions, and fishing pressure impacted their survival.
- Planning for winter-run includes the ongoing re-introduction above Shasta Reservoir and jumpstart reintroduction in Battle Creek.

Big 8-Page Special Where and How to Camp

By MIKE HAYDEN
Nobody is sure how this winter run started or why it's growing. But anchor-fishermen love these royal salmon

A key to succoss: plus
success: plug
with sardine

WITH COLD, numb fingers I fipped open the vail on my spinning greel Walter Kaulk's outhoard-powered runabout. My lure was a large banana-shaped plug balted with a sliver of tresh sardine.
I remained on my feet long enough to watch the silver plug rocket a short distance througb drifting tendrils of morning mist before it plunged and vaniabed is a ginssy blick downstream. Then I planted myself in the stern beside Joba Rogimato and grataruly Kayk, who sat up front at the from Wsiter Kauk, who sat up front at the
As I turned to take the steaming cup with my right hand, the cork butt of my seven-foot glass rod suddenly sprang skyward and threatened to catspult from the grasp of my left hand. For an insatant I froze, caught with my arms crosaed awkwardly. Thes, in one uninterrugted motion,

Monitoring of Winter-run: Adults

- No long-term monitoring prior to the 40 years of the Red Bluff Diversion Dam (RBDD) 1967-2008.
- Balls Ferry Weir (1940's) lasted only 3 years.
- Carcass surveys begin in 1990's and become "official" for winterrun in 2001.
- CURENT YÉARS: 2003-2023

sprior to Bluff $967-2008$.

Aerial Redd Survey: Used to determine the timing and extent of spawning in the river. The proportion of redds outside the carcass survey (if any) is used to expand the carcass survey numbers. Redd location and timing also inform water temperature management actions.

2023 Summary of Aerial Redd Survey Data*

2023 Summary of Aerial Redd Survey Data*											
Late- Fall	$\%$ Dist.	Winter	$\%$ Dist.	Spring	$\%$ Dist.	Fall	$\%$ Dist	ALL	$\%$ Dist.	RIVER SECTIONS	
93	74%	17	27%	0	0%	21	14%	131	39%	Keswick to A.C.I.D. Dam.	
11	9%	32	50%	0	0%	12	8%	55	16%	A.C.I.D. Dam to Highway 44 Bridge	
8	6%	15	23%	1	100%	29	19%	53	16%	Highway 44 Br. to Airport Rd. Br.	
0	0%	0	0%	0	0%	13	9%	13	4%	Airport Rd. Br. to Balls Ferry Br.	
1	1%	0	0%	0	0%	19	13%	20	6%	Balls Ferry Br. to Battle Creek.	
2	2%	0	0%	0	0%	8	5%	10	3%	Battle Creek to Jellys Ferry Br.	
0	0%	0	0%	n / s	n / s	6	4%	6	2%	Jellys Ferry Br. to Bend Bridge	
2	2%	0	0%	n / s	n / s	7	5%	9	3%	Bend Bridge to RBDD	
8	6%	n / s	n / s	n / s	n / s	17	11%	25	7%	RBDD to Tehama Br.	
0	0%	n / s	n / s	n / s	n / s	5	3%	5	1%	Tehama Br. To Woodson Bridge	
n / a	n / a	n / s	n / s	n / s	n / s	2	1%	2	1%	Woodson Bridge to Hamilton City Br.	
n / a	n / a	n / s	n / s	n / s	n / s	9	6%	9	3%	Hamilton City Bridge to Ord Ferry Br.	
n / a	n / a	n / s	n / s	n / s	n / s	2	1%	2	1%	Ord Ferry Br. To Princeton Ferry.	
$\mathbf{1 2 5}$	$\mathbf{1 0 0 \%}$	$\mathbf{6 4}$	$\mathbf{1 0 0 \%}$	$\mathbf{1}$	$\mathbf{1 0 0 \%}$	$\mathbf{1 5 0}$	$\mathbf{1 0 0 \%}$	$\mathbf{3 4 0}$	$\mathbf{1 0 0 \%}$		

* Summary of: 1 late-fall-run, 13 winter-run, 1 spring-run, and 3 fall-run Chinook Salmon redd counting flights.

In 2023, there were 64 winter-run redds observed over 13 helicopter flights

Carcass Surveys: are used to develop the annual population estimate for four runs of salmon each year in the Sacramento River. The winter-run survey occurs from May to September, using two boats, seven days per week. It is a collaborative effort between the CDFW, USFWS and PSMFC staff.

Crews spear salmon carcasses with long poles and collect samples and data from each fish and return many of them to the river with a numbered jaw tag. Subsequent recaptures of the tagged fish form the basis of the "mark-recapture" methodology used to estimate how many winter-run salmon were in the population. Other data is simultaneously collected on the carcasses such as sex, length, prespawn mortality, scales, otoliths, tissues, cwt tags, and other information as needed.

Carcass survey results create a female in-river estimate, additional information from LSNFH and aerial redd surveys are utilized to expand the carcass mark-recapture effort. Once combined, all sources of winter-run data are then used to characterize the population for various management and research needs.

In 2023 there were an estimated 2,427 winter-run salmon in the Sacramento River

Following the creation of the annual population estimate the annual data is available in a summary table providing winter-run data for categories of interest for various users.

Winter-Run Chinook Salmon Data Table available for various categories for 1996-2023

Category	Note*	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023
Official Total System Estimate	1	1,337	880	2,998	3,289	1,353	8,223	7,459	8,218	7,869	15,839	17,297	2,543	2,830	4,537	1,596	827	2.673	6,086	3,015	3,440	1,548	977	2.638	8,033	6,390	10,269	5,927	2,427
In--iver spawner estimate	2	1,012	836	2,889	3,264	1,263	8,120	7,360	8,133	7,784	15,730	17,197	2,487	2,725	4,416	1,533	738	2,578	5,920	2,627	3,182	1,409	795	2,458	7,852	6,195	9,956	5,437	1,920
Into Hatcher ((CNFH or LSNFH)	3	325	44	103	24	89	102	96	85	85	109	94	55	105	121	63	86	93	164	388	257	137	180	180	180	191	298	484	507
Other Winter-run (e.g. -Batte, LF S surver)	4	237	226	6	1	1	1	3	0	0	0	6	1	0	0	0	3	2	2	0	1	2	2	0	1	4	15	6	
Lower confidence interva (90\%)	5	n/a	2,449	5,343	2,741	3,042	329	109	2,235	7,213	5,958	9,280	5,009	2,084															
Upper confidence interva (90%)	6	n/a	2,894	6,732	3,290	3,836	2,763	1.888	3,029	8,852	6,821	11,258	6,889	2,767															
Peterson standardized estimate	7	273	564	2,162	1,136	4,290	6,760	6,106	6,602	6,205	13,549	13,919	2,161	2,448	3,307	1,338	712	2,246	5,198	2,475	2,454	829	610	2,017	5,380	5,994	7,896	4,031	1,610
Reported Peterson estimate	8	820	2,053	5,501	2,262	6,670	11,502	10,541	n/a																				
Jumpstart returns into Batte Creek (into Sac Riv)	9	n/a	$95(0)$	1038 (8)	240 (24)	109 (1)	$54(2)$																						
RBDD estimate	10	1,337	880	2,992	3,288	1,352	5,523	9,169	9,55	7,192	5,299	7,436	6,144	3,635	n/a														
Number adult females in-river-(no jilis)	11	193	395	1,908	817	3,483	5,262	5,682	5,179	3,252	9,005	8,807	1,542	1,462	2,717	822	424	1.498	3,613	1.698	2,058	560	236	1,024	4,888	3,978	6,199	2,650	1,065
Number total females in-river	12	193	422	1,908	849	3,508	5,295	5,733	5,218	3,292	9,047	8,858	1,550	1,462	2,722	824	491	1,498	3,680	1,744	2,063	658	373	1,088	4,947	4,023	6,199	2,663	1,070
Total spawning females in-river (no unspawned)	13	182	407	1809	827	3508	5260	5654	5189	3258	8849	8664	1519	1439	2699	817	488	1481	3645	1727	2022	653	367	1080	4884	3904	5860	2607	1061
Carcasses encountered on survey	14	118	239	785	475	2,482	5,145	4,959	4,549	3,280	8,771	7,698	1,581	1,409	1,904	908	430	1,348	3,219	1,389	1,194	297	143	1,126	3,026	3,678	4,847	1,650	528
Percent of population observed on survey	15	43\%	42\%	36\%	42\%	58\%	63\%	66\%	55\%	42\%	55\%	45\%	62\%	50\%	42\%	57\%	52\%	50\%	53\%	46\%	35\%	19\%	15\%	43\%	38\%	58\%	47\%	28\%	22\%
Date of peak carcasses encountered	16	15-uly	11-July	01-July	22 -une	02-July	08-July	15-July	1-July	15-uly	23-July	14-July	14-July	5-July	5-uly	4-July	21-July	22-July	19-July	6 -July	17-July	21-July	29-uly	31-July	9.July	$8+17$ July	10-uly	12-Ju	17-July
Carcasses tageed (all fish)	17	86	191	575	313	2,000	4,364	3,770	3,457	2,072	4,758	4,121	1,063	841	1,146	582	253	881	1,734	731	721	223	93	857	1,883	2.508	2,906	1,000	329
Carcasses chopped (all-mark-reapture)	18	32	48	208	162	482	781	1,189	882	958	2,448	2,556	427	502	606	189	134	467	1,485	658	473	74	50	269	1,143	1,170	1.941	650	199
Carcasses chopped (cipsesear 2 20320121)	19	n/a	210	250	1,565	921	91	66	152	137	43	388	183	211	213	83	112	906	954	1,527	1,220	109	110						
Carcasses recaptured (all)	20	13	22	75	57	829	2,200	2,159	2,175	1.128	3,001	2,206	716	475	401	384	124	533	990	335	252	59	20	457	713	1,610	1,463	361	103
Percent recaptured (all)	21	15\%	12\%	13\%	18\%	41\%	50\%	57\%	63\%	54\%	63\%	54\%	67\%	56\%	35\%	66\%	49\%	60\%	57\%	46\%	35\%	26\%	22\%	53\%	38\%	64\%	50\%	36\%	31\%
Carcasses showing hatchery orig	22	0	5	4	4	4	155	208	179	250	1,565	885	83	60	137	112	32	362	158	196	195	76	109	903	948	1.474	1,201	94	104
Number of CWT 's found ((x) non-winter CWT	23	0	5 (0)	$2(0)$	2(1)	1(1)	$124(0)$	148 (8)	$134(0)$	168 (1)	1269 (1)	776 (0)	66 (1)	46 (1)	116 (1)	100 (4)	$21(0)$	$312(0)$	133 (3)	168 (1)	$161(0)$	$71(1)$	106 (0)	$879(0)$	$888(0)$	1,404(0)	1,135 (2)	$74(0)$	
Number of hatchery fish in population	24	0	12	11	10	7	429	566	423	636	3,056	2,386	143	170	467	199	80	810	399	705	770	466	824	2,177	2,989	2,907	3,271	641	707
Percent hatchery fish in population	25	0.0\%	2.1\%	0.5\%	0.8\%	0.2\%	5.2\%	7.6\%	5.1\%	8.1\%	19.3\%	13.8\%	5.6\%	6.0\%	10.3\%	12.5\%	9.7\%	30.3\%	6.6\%	23.4\%	22.4\%	30.1\%	84.3\%	82.5\%	37.2\%	45.5\%	31.9\%	10.8\%	29.1\%
Number of hatchery fish in-river	26	n/a	${ }^{413}$	${ }^{628}$	3,048	2,379	134	161	461	197	79	${ }^{808}$	399	454	${ }^{638}$	${ }^{358}$	${ }^{655}$	2,023	2,873	2,781	3,030	${ }^{318}$	433						
Percent of hatchery fish in-river	27	n/a	5.1\%	8.1\%	19.4\%	13.8\%	5.4\%	5.9\%	10.4\%	12.9\%	10.7\%	31.3\%	6.7\%	17.3\%	20.1\%	25.4\%	82.4\%	82.3\%	36.6\%	44.9\%	30.4\%	5.8\%	22.6\%						
Number of WR floy tags released	28	n/a	n/a	n/a	n/a	20	106	100	152	261	281	219	103	93	157	359	293	714	197	41	177	303	194	403	293	357	646	110	311
Number of WR floy tags recaptured	29	n/a	n/a	n/a	n/a	0	1	5	26	10	34	33	10	9	12	24	10	44	20	0	10	20	1	13	13	48	26	9	13
Percent of floy tags observed	30	n/a	n/a	n/a	n/a	0\%	1\%	5\%	17\%	4\%	12\%	15\%	10\%	10\%	8\%	7\%	3\%	6\%	10\%	0\%	6\%	7\%	1\%	3\%	4\%	13\%	4\%	8\%	4\%
Percent males: surver and LSNFH (omes	31	29\%	25\%	12\%	25\%	18\%	${ }^{35 \%}$	22\%	36\%	55\%	43\%	48\%	38\%	46\%	39\%	46\%	35\%	42\%	38\%	35\%	36\%	54\%\%	56\%	57\%	38\%	36\%	38\%	52\%	30\%
Percent adut males to all adults:	32	13\%	24\%	10\%	11\%	17\%	29\%	18\%	32\%	43\%	38\%	48\%	35\%	42\%	38\%	45\%	28\%	39\%	34\%	29\%	35\%	37\%	40\%	54\%	35\%	29\%	37\%	48\%	29\%
Percent adut males to all fish:	33	11\%	22\%	10\%	9\%	16\%	26\%	17\%	30\%	32\%	35\%	47\%	33\%	39\%	38\%	44\%	21\%	37\%	32\%	26\%	34\%	22\%	20\%	30\%	33\%	26\%	36\%	44\%	28\%
Percent jacks to alf fish:	34	18\%	4\%	2\%	17\%	2\%	9\%	5\%	6\%	26\%	7\%	2\%	5\%	7\%	1\%	2\%	13\%	5\%	7\%	9\%	1\%	32\%	35\%	26\%	5\%	10\%	3\%	8\%	
Number of facks: survey and ISNFH (xaen	35	50+n/2	21+n/a	$40+0$	$189+12$	90+17	$738+22$	$360+15$	$496+8$	$2015+26$	$1110+4$	$327+0$	129+2	$203+4$	$48+1$	$39+0$	87+22	$142+2$	393+2	$183+88$	$43+6$	$420+67$	$302+44$	$665+23$	391+14	$613+12$	$245+15$	315+531	14+27
Fork lengt cutoff for jacks (mm): survey	36	<645	<645	< 595	${ }^{6635}$	<605	<665	<685	<610	<710	<670	-660	<670	<670	<670	<670	<705	-645	<675	<700	-610	<710	<720	${ }^{2705}$	<680	<665	<625	<675	${ }^{<610}$
Percent females: survey and LSNFH	37	71\%	75\%	88\%	75\%	82\%	65\%	78\%	64\%	42\%	57\%	52\%	62\%	54\%	61\%	54\%	65\%	58\%	62\%	65\%	64\%	46\%	44\%	44\%	62\%	64\%	62\%	48\%	70\%
Percent adult females to all aduls:	38	87\%	76\%	90\%	89\%	83\%	71\%	82\%	68\%	57\%	62\%	52\%	65\%	58\%	62\%	55\%	72\%	61\%	66\%	71\%	65\%	63\%	60\%	57\%	65\%	71\%	63\%	52\%	71\%
Percent adut females to all fish:	39	71\%	70\%	88\%	72\%	81\%	64.30\%	77\%	64\%	42\%	57\%	51\%	62\%	54\%	61\%	53\%	56\%	58\%	61\%	63\%	64\%	38\%	30\%	41\%	62\%	64\%	62\%	48\%	70\%
Percent jills to all fish: surve a and LSNFH	40	0\%	5\%	0\%	3\%	1\%	0\%	1\%	0\%	1\%	0\%	0\%	0\%	0\%	0\%	0\%	9\%	0\%	1\%	2\%	0\%	9\%	14\%	3\%	1\%	1\%	0\%	0\%	0
Number of fills: in-river and ISNFH	41	0+n/a	27n/a	0+3	$32+0$	$25+0$	33+0	$51+0$	$39+0$	$40+1$	$42+0$	$51+0$	${ }^{8+0}$	0+0	$5+0$	$2+0$	66+12	$0+0$	67+0	$46+11$	$5+2$	${ }^{98+37}$	$137+3$	64+2	$59+0$	$45+1$	0+0	$13+7$	$7+0$
Fork length cutoff forjilis (mm): survey	42	<645	<645	< 595	<595	<585	<605	< 545	<610	<610	<600	<590	<600	<600	<600	<580	<645	< 540	<626	<610	<575	<630	<645	<620	<610	<590	-525	<610	¢580
Percent Aduls ${ }^{\text {s P Percent Grise }}$	43	${ }^{82 \% \text { 238\% }}$	${ }^{29 \times-8 \%}$	${ }^{\text {ask } 28.28}$	80\%\%.20x								95\%-5\%	${ }^{2984288}$	${ }^{\text {9096-188 }}$	${ }^{\text {ch7x-36 }}$	${ }_{\substack{785.238 \\ 677.187}}$	${ }^{\text {ask } 58}$		${ }^{\text {88\% } 118}$	${ }_{\substack{\text { 3883 } 28.56}}^{\text {3\% }}$	${ }^{\text {600. }} 9$	50\%-50\%						
Number Adults v S Number Grise Percent femal spawn success	44	${ }^{223.50}$	${ }_{\text {516.48 }}^{\text {96, }}$	${ }^{2122-40}$	${ }^{915} 9.221$	4175.115 100.0\%	${ }^{\text {7399.771 }}$	${ }^{\text {699.411 }}$	${ }^{\text {7675.563 }}$	${ }_{\text {ctab }}^{59.2083}$	${ }_{\text {14683.1156 }}^{\text {97.8\% }}$	16918.378 97.8%	${ }^{20202.139}$	${ }^{2622.207}$	${ }^{\text {a883.54 }} 9$	${ }^{1555.41}$ 99.2\%	${ }^{637.187} 9$	${ }^{2527.144}$	5957.462	${ }^{2688328} 9$	333.56 98.0\%	${ }_{99.2 \%}^{924}$	-35.388	${ }_{\text {1730.73 }} 9$	${ }^{7703.350}$	${ }^{5755.671}$	${ }^{9,994.260}$	5,433-488 97.9\%	${ }_{\text {2350-47 }}{ }^{29.1 \%}$
Percent females unspawned (prespawn morts)	46	5.5\%	3.6\%	5.2\%	2.6\%	0.0\%	0.7\%	1.4\%	0.5\%	1.0\%	2.2\%	2.2\%	2.0\%	1.6\%	0.8\%	0.8\%	0.6\%	1.2\%	1.0\%	1.0\%	2.0\%	0.8\%	1.7\%	0.7\%	1.3\%	3.0\%	5.5\%	2.1\%	0.0088
Average fork length (m) frest females	47	n/a	739	760	757	756	770	766	752	748	732	715	806	748	721	691	674	738	763	726	744	761	802						
Average femal fecundity (\#e egss)	48	5,019	5019	5019	5019	5019	5019	4,923	4,854	5,515	5,500	5,484	5,112	5,424	5,519	5,161	4,832	4,518	4,596	5,308	4,819	4,131	4,109	5,141	5,424	4,991	5,312	5,505	5.510
Estimated number of egss layed in-river	49	${ }^{915,831}$	2,022375	9.078, 909	4,148,23	17,606,652	$26,388.139$	27,83,461	$25.189,68$	17988930	488671,433	47,514,506	7,76,556	7,806,949	12,895,96	4.217 .615	${ }^{2} 3585220$	${ }^{\text {6,689267 }}$	16,750,966	9.168354	9,722,26	2.659652	1.507,113	5.552,179	26,900, 89	19,889,95	31,125,288	${ }^{10,351,535}$	5,86,110
Number hatcherr juveniles released in-river	50	4,718	21,271	153,009	30,840	166,206	252,684	23,613	218,617	168,261	173,344	196,288	71,883	146,211	198,582	123,859	194,264	181,857	205,24	609,311	420,006	141,388	217,270	223,817	249,119	302,166	520,285	732,32	
Number of Jumpstart (Battle Cr.) juws released	51	n/a	215,047	185,000	182,415	214,000	137,358	174,50																					
Juvenile Production Estimate (females)	52	550,872	1,386,346	4,676,143	1,90,299	4,966, 118	5,6,4,355	6,98,6,66	6,181,295	2,768,832	12,109974	11,88,806	1.884 .51	1.952614	3,728,44	${ }^{1,0993835}$	512,192	${ }^{1.809584}$	4,431,54	2 2009,171	2.685054	166,189	201,099	${ }^{133,176}$	${ }^{859991}$	330,130	125,038	${ }^{49,29}$	
Juvenile Production Index (RST RBDD)	53	469,183	2205,163	5.000.a16	1.366,61	n/a	n/	7.,55,499	5,78,519	3,677999	8,93, 1.19	${ }^{7}$ 2,98388	1.677,809	1.371,79	4.972 .584	$1.572,68$	996,21	1.814248	${ }_{2}$ 281, 278	523.872	400951	${ }^{60,149}$	734,422	1.477 .52	4,691,764	22770.66	799,427	35,001	
Percent eggs toj juvenile survival past RBDD	54	n/a	n/a	n/a	n/a	n/a	n/a	27.4\%	23.0\%	20.5\%	18.4\%	15.4\%	21.1\%	17.6\%	33.4\%	37.3\%	42.3\%	27.1\%	14.8\%	5.7\%	4.5\%	23.7\%	48.7\%	26.6\%	17.7\%	11.7\%	2.5\%	2.5\%	0.0\%
Percent mortaily of total eggs to juveniles past R RDD	55	N/	n/a	n/	n/	n/a	n/a	72.6\%	77.0\%	79.5\%	81.6\%	84.6\%	78.9\%	82.4\%	66.6\%	62.7\%	57.7\%	72.9\%	85.2\%	94.3\%	95.5\%	7.3\%	51.3\%	73.4\%	82.3\%	88.3\%	97.5\%	97.5\%	1
Estimated fry at R8DO for each female spawner	56	n/a	n/a	n/a	n/a	n/a	n/a	1,351	1,114	1,129	1,011	842	1,078	953	1,843	1,924	2,042	1,225	681	303	218	981	2,002	1,368	961	582	133	136	0
Cohort Replacement Rate	57	3.5	4.7	2.3	2.5	1.5	2.7	2.3	6.1	1.0	2.1	2.1	0.3	0.2	0.3	0.6	0.3	0.6	3.8	3.6	1.3	0.3	0.3	0.8	5.2	6.5	3.9	0.7	0.4
Total number of winter redds observed	58	43	30	141	1,146	572	1,396	610	878	621	1,968	717	288	441	86	223	18	261	569	127	196	18	${ }^{26}$	198	515	491	578	406	64
Total number of WR redds dewatered	59	n/a	50	1	(${ }^{0}$	\%	${ }^{2}$	\%	26	${ }^{2}$	${ }^{4}$																	
Percent of redds within carcass survey area	60	100\%	100\%	94\%	92.5\%	72.1\%	89.5\%	95.\%	993\%	100\%	100\%	99.7\%	96.2\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	99.8\%	100.0\%	100.0\%	100.0\%	100.0\%
Percent of redds not observed by flights	61	76\%	93\%	92\%	-39\%	84\%	73\%	89\%	83\%	81\%	78\%	92\%	81\%	69\%	97\%	73\%	96\%	82\%	84\%	93\%	90\%	97\%	93\%	82\%	89\%	87\%	90\%	84\%	94\%
Surrey Date Start	62	4-Apr	30-Apr	5 -May	${ }^{\text {5-May }}$	${ }^{\text {3-May }}$	${ }^{2-M a y}$	${ }^{1-\mathrm{May}}$	30-Apr	30-Apr	28-Apr	${ }^{1-\text {-May }}$	${ }^{1-M a y}$	${ }^{1-\mathrm{May}}$	4-May	${ }^{\text {3-May }}$	${ }^{2-M a y}$	30-Apr	30-Apr	29-Apr	28-Apr	${ }^{2}$-May	${ }^{1-M a y}$	30-Apr	29-Apr	${ }^{4}$-May	${ }^{\text {3-May }}$	${ }^{2}$-May	${ }^{1 . M a y}$
Survey Date End	63	5.sep	29-Aug	28-Aug	27-Aug	29-Aug	29-Aug	27-Aug	4.5 sep	3-5ep	2.sep	25-Aug	24-Aug	22-Aug	28-Aug	27-Aug	1-Sep	2 2.sep	5.sep	11-Sep	17-5ep	15-5ep	6 -Sep	26. Sep	26.Sep	24.sep	23 -5ep	22.Sep	21-Sep
Number of Surver Periods Surver River Mie Range	64	${ }_{27}^{19} 101$	${ }_{288.31}^{41}$	2989 2801	${ }_{\text {288.301 }}$	${ }_{288}^{40}$	${ }_{\text {288.301 }}^{40}$	$\begin{array}{r}288 \\ \hline 201 \\ \hline\end{array}$	${ }_{285} 28.301$	43 275301	$\stackrel{43}{273.301}$	${ }_{\text {27-301 }}$	${ }_{\text {276-301 }}$	28 276 -301	$\stackrel{39}{27601}$	${ }_{276.301}^{39}$	-418.301	${ }_{276}^{42}$	${ }_{236}^{47.301}$	${ }_{\text {27-301 }}$	${ }_{275}^{27.301}$	${ }_{276}^{47.31}$	${ }_{276.301}^{43}$	$\stackrel{47}{27.301}$	${ }_{276 \text {-301 }}^{48}$	${ }^{277}$ 4501	${ }_{27}^{27.301}$	${ }^{277}$ 4501	45 27609
Fow range (cfs x 1000)	66	7-16	8-15	$10-23$	9-13	8-16	8.15	7-15	8-29	8-16	4-37	6-15	8-15	8-13	7.13	7-15	6-19	6-14	7-14	4-11	7-7.5	5-10.7	5-13	7-13	5-13	7-12.8	7.10	4.6-3.3	7-13.4
Water temp (\%) range	67	52-59	49-52	50.54	50-54	51-54	50-55	50.56	50-54	50.57	51-59	50-56	50-58	50.58	51-58	49-54	50-57	50.55	50-58	50-59	53-60	51-56	49-57	$51-55$	51-56	51.60	52-61	51-60	49.53
Visibility range (ft)	68	n/a	3-10	4.5-11	6-11	9-21	14-21	17-22	8-15+	8.5-16	2-16+	5-13	2.5-20+	10.5-16+	2-11	4-16+	5-14	6-15+	8-15+	7-15+	7-15	5-10	2.9	10-16	1-12	4-16+	8-15	7-14	2 -13
Tissue samples collected	69	0	0	0	0	0	0	0	1.584	870	2,201	2,138	787	548	836	782	347	1,045	1,867	845	791	254	132	1,078	2,323	2,941	2,530	1,126	
Scale samples collected	70	0	0	0	0	0	0	0	0	72	219	1,807	758	537	832	639	277	894	982	754	718	${ }^{216}$	113	869	885	2,636	1,816	606	346
Otoilith samples collected	71	0	0	0	,	0	0		0	0	,	0	0	,	0	0	0	594	789	112	402	253	129	1,062	970	158	163	134	
Eye samples collected	72	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	937	712	152	162	0	0
	73	вло	вло	8no	вno	вno	JıF	JıF	вnо	JıF	JıF	вno	BSF	and	and	JıF	JıF	JıF	and	cCR	cCR	BSF	BSF	BSF	BSF	CCR	SAC	sac	ccr

Other Winter-Run Data: Carcass survey data is combined with data from Livingston Stone National Fish Hatchery (LSNFH) to create the annual population estimate.

LSNFH at the base of Shasta Dam is a conservation hatchery that uses up to 120 adults each year to produce around 200,000 juveniles (some years more). Adults are captured at Keswick dam. Juveniles are released in Redding near end of January each year

Each year winter-run adults are collected by USFWS at the Keswick fish trap and trucked to the LSNFH where they are sorted and hatchery broodstock fish are selected and tanked until ready for spawning in the summer.

Shallow/Dewatered Redd Monitoring: In concert with the carcass surveys this effort monitors winter-run redd dewatering annually. Dewatered redd surveys begin in June for winter-run. They are designed to identify shallow water redds that may become dewatered if flows are lowered later in year. Depending on water temperatures Chinook redds can take between 70 and 100+ days for juvenile salmon to emerge from the gravel and start feeding.

- Shallow Winter-run redd monitoring initiated in 2013 season.
- Physical data collection: location, depth, photo, fish presence.

Data from the shallow/dewatered redd survey is used to inform flow management during and after the adult spawning takes place. In 2023, twenty-six shallow redds were monitored and three were dewatered before juveniles had opportunity to emerge from those redds. In total, there were an estimated 1,061 redds in the river and 0.28% of these (3) were dewatered.

1 D	$\left\lvert\, \begin{gathered} \text { Redd } \\ \text { Number } \end{gathered}\right.$	Born On Date	Estimated Date of Emergence	Born on depth	Status	Born on FLOW (KWK)	Born on Flow (KES)	$\begin{array}{\|l\|} \text { ACTUAL or ESTIMATED } \\ \text { DEWATER FLOW (KES) } \end{array}$	Location
1	4001	13-Jun	17-Sep	15	EMERGED	9,227	9,095	6,500	Sec 2, RR Below Sundial
2	4002	13-Jun	17-Sep	37	EMERGED	9,227	9,095	5,000	$\operatorname{Sec} 2$, RL Sewer Line
3	4003	22-Jun	26-Sep	18	EMERGED	9,514	9,011	5,000	Sec 2, RL Turtle Bay West
4	4004	22-Jun	26-Sep	19	EMERGED	11,062	10,365	5,000	Sec 2, RL Turtle Bay West
5	4005	22-Jun	26-Sep	17	EMERGED	9,484	8,974	6,000	Sec 2, TB Kayak Ramp
6	4006	5-Jul	9-Oct	15	EMERGED	11,095	10,383	3,500	$\operatorname{Sec} 2, \mathrm{RL}$ Sewer Line
7	4007	12-Jul	20-Oct	54	EMERGED	10,705	10,627	3,250	Sec 1, Center Above Dentist House
8	4008	12-Jul	16-Oct	18	EMERGED	10,705	10,686	5,000	$\operatorname{Sec} 2$, RR Below Sundial
9	4009	5-Jul	9-Oct	13	EMERGED	11,030	10,363	5,000	Sec 2, RR Market Street Gravel
10	4010	12-Jul	16-Oct	12	DEWATERED	10,673	10,664	6,600	Sec 2, TB Kayak Ramp
11	4011	12-Jul	16-Oct	11	EMERGED	10,673	10,664	5,000	Sec 2, TB Kayak Ramp
12	4012	12-Jul	16-Oct	17	EMERGED	10,673	10,664	4,000	Sec 2, TB Kayak Ramp
13	4013	12-Jul	16 -Oct	17	EMERGED	10,673	10,664	5,000	Sec 2, TB Kayak Ramp
14	4014	12-Jul	$16-\mathrm{Oct}$	24	EMERGED	10,721	10,682	4,000	Sec 2, TB Kayak Ramp
15	4015	19-Jul	27-Oct	49	EMERGED	11,095	10,985	4,000	Sec 1, RR Above Big Bend
16	4016	19-Jul	20-Oct	34	EMERGED	11,079	10,985	4,000	Sec 3, RL at Coppertop Riffle
17	4017	19-Jul	24-Oct	19	EMERGED	11,079	10,974	4,000	Sec 2, TB Kayak Ramp
18	4018	19-Jul	24-Oct	26	EMERGED	11,079	10,974	4,000	$\operatorname{Sec} 2, \mathrm{RL}$ Sewer Line
19	4019	25-Jul	2-Nov	39	EMERGED	11,062	10,755	4,000	Sec 1, RR Above Big Bend
20	4020	25-Jul	27-Oct	35	EMERGED	11,062	10,730	4,000	Sec 2, Painter's Side Channel
21	4021	$25-\mathrm{Jul}$	27-Oct	37	EMERGED	11,062	10,730	4,000	Sec 2, Painter's Side Channel
23	4022	25-Jul	27-Oct	32	EMERGED	11,062	10,755	4,500	Sec 2, Painter's Side Channel
24	4023	25-Jul	30-Oct	21	EMERGED	11,062	10,677	4,500	Sec 2, RR Market Street Gravel
25	4024	25-Jul	30-Oct	18	EMERGED	11,062	10,677	5,800	$\operatorname{Sec} 2$, RR Market Street Gravel
26	4025	25-Jul	29-Oct	10	DEWATERED	11,128	10,677	6,600	$\operatorname{Sec} 2$, RL Below Market Street
27	4026	27-Jul	31-Oct	13	DEWATERED	11,226	10,692	6,400	Sec 2, RL Below Market Street

Questions?

Further information on winter-run data can be found on the Calfish website at the following link:
https://www.calfish.org/ProgramsData/ConservationandManagement/CentralValleyMonitori ng/CDFWUpperSacRiverBasinSalmonidMonitoring.aspx

Or by contacting doug.Killam@wildlife.ca.gov

